

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Approved by AICTE, New Delhi, Affiliated to JNTUK, Kakinada)

Accredited by NAAC with 'A+' Grade

Recognised as Scientific and Industrial Research Organisation SRKR MARG, CHINA AMIRAM, BHIMAVARAM – 534204 W.G.Dt., A.P., INDIA

Regulation: R23

ELECTRICAL AND ELECTRONICS ENGINEERING (Minors)

(Applicable for AIDS, AIML, CIC, CSBS, CSE, CSG, CSIT, ECE, CE, IT & ME)

COURSE STRUCTURE

(With effect from 2023-24 admitted Batch onwards)

Course Code	Course Name	Year/ Sem	Cr	L	Т	P	C.I.E	S.E.E	Total Marks
B23EEM101	Power Transmission & Distribution	II-II	3	3	0	0	30	70	100
B23EEM201	Electrical Machines & Applications	III-I	3	3	0	0	30	70	100
B23EEM301	Power Conversion & Battery Storage	III-II	3	3	0	0	30	70	100
B23EEM401	Electric Vehicle Fundamentals	IV-I	3	3	0	0	30	70	100
B23EEM501	*MOOCS-I	II-II to IV-I	3						100
B23EEM601	*MOOCS-II	II-II to IV-I	3					-1-	100
	,	TOTAL	18	12	0	0	120	280	600

*Two MOOCS courses of any **ELECTRICAL AND ELECTRONICS ENGINEERING** related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 12 weeks (3 Credits) courses other than the courses offered need to be takenby prior information to the concern. These courses should be completed between II Year II Semester to IV Year I Semester.

Cour	se Code	Category	${f L}$	T	P	C	C.I.E.	S.E.E.	Exam
B23E	EM101	Minor	3			3	30	70	3 Hrs.
		POWI	ER TRA	NSMIS	SION A	ND DIS	TRIBUT	ION	
			(Mi	nor Deg	ree cour	se in EE	E)		
Course	Objective	es: Students w	ill learn a	about					
1.	The pow	er supply sys	tems and	conduct	tor mater	ial requi	rements f	or Overhea	d system.
2.	The mec	hanical desig	n of trans	smission	lines an	d insulat	or require	ments.	
3.	The perf	ormance anal	ysis of di	fferent t	ypes of	ransmis	sion lines.		
4.	The diffe	erent types of	distribut	ion syste	ems				
5.	The unde	erground cabl	es and di	fferent s	ubstatio	ıs.			
Course	Outcomes	At the end o	f the cou	rse, the s	students	will be a	ble to		
S. No				Outco	mes				Knowledge Level
1.		D.C and A. requirement.	C transn	nission	network	s and ca	lculate C	Conductor	К3
2.	Examine system.	the mechan	ical and	electric	al desig	n aspec	ts of trar	ismission	К3
3.	Determin	ne the perforn	nance of	short an	d mediu	n transn	nission lin	es	К3
4.	Illustrat	e the working	of D.C a	nd A.C	Distribu	tion syste	ems		К3
5.	Explore	the undergrou	ınd cable	s and ill	ustrate d	ifferent s	substation	SEGE	К3
	F	std. 1980			AUT	MONC	005		
				SY	LLABU	S			
UNIT (10 H	T-I Tra 3 -	nsmission Vo	ypical A oltage, Da ree phase	C & 1 .C 2 - w	ire and 3 re syster	s - wire s ns, com	systems, A parison of	A.C single 1	antages of High phase, three phase ficiency, Kelvin's
		chanical Des	0					2.7	
UNIT (10 H		-					• .	•	ulators, Potential Improving String
	Eff	iciency, Coro	na effect	, Skin e	ffect, Fe	rranti eff	ect.		
UNIT-III (10 Hrs) Performance of Transmission Lines: Constants of a Transmission Line, Classification of Regulation and efficiency of a Transmission Line, Short Transmission Lines - End Condenser Method, Nominal Method.					Short Tr	ansmission	Lines, Medium		

UNIT-I	Distribution Systems: V Classification of Distribution Systems, Types of D.C. Distributors, D.C. Distribution						
(10 Hr	· · · · · · · · · · · · · · · · · · ·						
both ends (concentrated loading). Introduction to AC Distribution system.							
	Underground Cables and Substations:						
UNIT-	Underground cables, Construction & types of cables, comparison of overhead and						
(10 Hr	underground transmission system, Substation - Functions of Substation, Classification of substations, Symbols, for againment in substation, Single bus her arrangement in						
	of substations, Symbols for equipment in substation, Single bus bar arrangement in Substations.						
	Substations.						
Text Bo	oks:						
1.	Electrical power Systems by C.L.Wadhwa, New Age International, 8 th Edition,2022.						
2.	Principles of Power systems by V.K. Mehta S. Chand Publications, 3 rd Edition, 2022.						
Referen	ce Books:						
1.	A Textbook on Power System Engineering. Gupta, M.L. Soni, U.S. Bhatnagar, A.						
1.	Chakrabarti. 9 th Edition,2009.						
2.	Generation, Distribution, utilization of Electrical Energy by C.L.Wadhwa, New Academi						
	Science,2011.						
e-Resour							
1.	https://nptel.ac.in/courses/108102047						
2.	https://nptel.ac.in/courses/108105104						

		Course C	ode: B	323EE	M101
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		II B.Tech. II Semester MODEL QUESTION PAPER			· ·
		POWER TRANSMISSION & DISTRIBUTION			
		(Minor Degree course in EEE)			
Tim	ie: 3 H	Irs. N	Iax. N	Iarks:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
			10 x 2		1
			CO	KL	M
1.	a).	What is meant by a transmission system.	1	2	2
	b).	What are disadvantages of d.c. transmission system?	1	2	2
	c).	Define string efficiency.	2	1	2
	d).	What is meant by Ferranti effect?	2	2	2
	e).	Classify different types of transmission systems.	3	1	2
	f).	Define voltage regulation in Transmission lines.	3	2	2
	g).	Define distributor.	4	2	2
	h).	Write any two advantages of ring distribution system over radial distribution systems.	4	1	2
	i).	Describe the functions of substation.	5	1	2
	j).	List out different types of Earthing methods.	5	2	2
			5 x 10	= 50 N	/larks
		UNIT-1			
2.	a).	Explain the advantages of high transmission voltage.	1	3	5
	b).	Compare the volume of conductor material required for a d.c. 2-wire system and 3-phase, 3-wire system on the basis of equal maximum potential difference between one conductor and earth. Make suitable assumptions.	1	3	5
		OR			
3.	a).	Compare D.C. and A.C. Transmission lines	1	3	5
	b).	State and prove Kelvin's law for size of conductor for transmission. Discuss its Limitations.	1	3	5
		UNIT-2			
4.	a).	Explain the methods to improve string efficiency.	2	3	5
	b).	In a 33 kV overhead line, there are three units in the string of insulators. If the capacitance between each insulator pin and earth is 11% of self-	2	3	5

	1			1	
		capacitance of each insulator, Calculate (i) the distribution of voltage			
		over 3 insulators and (ii) string efficiency. OR			
	-)		_	2	_
5.	a).	Explain the Corona phenomenon in transmission lines.	2	3	5
	b).	Discuss the various types of electrical insulators and their applications	2	3	5
		in electrical systems.			
		UNIT-3			
6.	a).	Explain the short transmission lines with phasor diagram.	3	3	5
-	<i>u)</i> .	A 3-phase line delivers 3600 kW at a p.f. 0.8 lagging to a load. If the			
		sending end voltage is 33 kV, determine (i) the receiving end voltage		_	_
	b).	(ii) line current (iii) transmission efficiency. The resistance and	3	3	5
		reactance of each conductor are 5.31 Ω and 5.54 Ω respectively.			
		OR			
		Derive the expressions for sending end voltage, current, power and p.f.,			
7.		transmission efficiency in a medium transmission line using nominal –	3	3	10
		T method and also draw the phasor diagram.			
		UNIT-4			
8.	a).	Draw and explain schematic diagram of radial and ring main distribution system.	4	3	5
	b).	A 2-wire d.c. distributor cable AB is 2 km long and supplies loads of 100A, 150A, 200A and 50A situated 500 m, 1000 m, 1600 m and 2000 m from the feeding point A. Each conductor has a resistance of 0.01Ω per 1000 m. Calculate the p.d. at each load point if a p.d. of 300 V is maintained at point A.	4	3	5
		OR			
9.	a).	Explain the types of D.C. Distributors with a neat sketches.	4	3	5
		A d.c. distributor AB is fed at both ends. At feeding point A, the voltage			
		is maintained at 235 V and at B at 236 V. The total length of the			
		distributor is 200m and loads are tapped off as under:			
		20 A at 50 m from A			
	b).	40 A at 75 m from A	4	3	5
		25 A at 100 m from A			
		30 A at 150 m from A The resistance per kilometre of one conductor is 0.4 O. Calculate the			
		The resistance per kilometre of one conductor is 0.4 Ω . Calculate the minimum voltage and the point at which it occurs.			
		minimum voltage and the point at which it occurs.			
		UNIT-5			
10.	a).	Explain the construction of underground cable with a neat sketch.	5	3	5
	b).	Compare overhead and underground transmission system.	5	3	5
	<i>D</i>)•	Compare overhead and anderground transmission system.	J	3	

		OR			
11.	a).	Explain the Single bus bar arrangement in substations with a neat diagram	5	3	5
	b).	Explain pipe earthing with a neat sketch.	5	3	5

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

Cour	rse Code	Category	L	T	P	C	C.I.E.	S.E.E.	Exam
B23I	EEM201	Minor	3			3	30	70	3 Hrs.
		EL	ECTRI	CAL MA	CHINE	S & APP	LICATION	IS	
			(Minor D	egree co	urse in EE	E)		
Cour		tives: Students							
1.		ciple and cons							
2.		king principle							
3.	polyphas	se connections	5.					losses and	efficiency and
4.		struction, oper					motors.		
5.	The wor	king and perfo	ormance	of synch	ronous m	achines.			
Cour	se Outco	mes: At the er	nd of the	course, t	he stude	nts will be	able to		¥7 1 1
S.No	o			O	utcome				Knowledge Level
1.		y the concepts ple and perfor				rgy conve	rsion to unc	lerstand the	K3
2.		re the perforn				ting of DC	machines.		К3
3.		in t <mark>he</mark> paramet transformer a						n of single-	К3
4.		rate the const					machines a	and analyze	K4
5.		ore the construction of th	uction &	operation	on of Sy	nchronous	machines a	and analyze	K4
				\$	SYLLAE	BUS			
	$\frac{11-1}{Hre}$ Co		d princij					-	For generator – OC Generators
	UNIT-II (10 Hrs) DC Motors and Testing of DC Machines: Principle operation of DC Motor, Back-emf and Torque equation of DC motor, Types of DC motors, Characteristics of DC motors – losses and efficiency – Applications of DC motors. Testing of DC machines – Brake test, Swinburne's test							• •	
	Transformers: Introduction to single-phase Transformers (Construction and principle of operation)—em equation — operation on no-load and on load —lagging, leading and unity power factor loads- equivalent circuit —regulation — losses and efficiency-Open Circuit and Short Circu tests — Three Phase Transformers - Y/Y, Y/Δ, Δ/Y, Δ/Δ connections, Applications of Transformers						power factors d Short Circuit		

UNIT-I (10 Hr	and nower tactor at standstill and during running conditions_Power flow diagram. Rotor				
	Resistance start induction wistor. Applications of induction wistors.				
UNIT-V (10 Hrs) Synchronous Machines: Generators (Alternators): Constructional features of salient pole and non-salient synchronous generators, E.M.F equation. Synchronous Motors: Principle and theory of operation, Starting of synchronous Motors Operating characteristics of synchronous motor - variable excitation and constant Applications of Synchronous Machines.					
Textboo	oks:				
1.	Electrical Technology Volume 2 by Theraja B.L., Theraja A.K., S Chand Publications, 2021.				
2.	Electrical Machines by R.K Rajput., Laxmi Publications, 4 th edition, 2006.				
Referen	ice Books:				
1.	Electrical Machinery, Dr. P.S. Bhimbra, Khanna Publishing, 2021,1 st Edition				
2. Theory & Performance of Electrical Machines by J.B.Gupta, S.K.Kataria & Sons, 15 2015.					
	ENGINEERING COLLEGE				
e-Resou	irces Esta 1980 AUTONOMOUS				
1.	https://nptel.ac.in/courses/117106108				
2.	https://nptel.ac.in/courses/108105131				

		Course C	ode: B	23EE	M201
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		III B.Tech. I Semester MODEL QUESTION PAPER			•
		ELECTRICAL MACHINES & APPLICATIONS			
		(Minor Degree course in EEE)			
Tim	ne: 3 H	Irs. N	Iax. M	larks:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
			10 x 2	= 20 N	Iarks
			CO	KL	M
1.	a).	State the basic parts of a DC Machine.	1	3	2
	b).	Write the e.m.f equation for D.C Generator.	1	3	2
	c).	What is back e.m.f in D.C Motors	2	4	2
	d).	Name any four applications of D.C series motors	2	4	2
	e).	State different losses which occur in a transformer	3	3	2
	f).	Define voltage regulation of a transformer.	3	3	2
	g).	What are sliprings.	4	4	2
	h).	Give the condition for maximum torque for 3-phase induction motor	4	4	2
	i).	Mention the basic parts of a synchronous motor.	5	4	2
	j).	Mention the need for starters in synchronous motors.	5	4	2
	1	Estd. 1980			•
			5 x 10	= 50 N	Iarks
		UNIT-1			
2.	a).	Explain the different methods of excitation in DC generators.	1	3	5
		A long-shunt compound generator delivers a load current of 50 A at 500			
	b).	V and has armature, series field and shunt field resistance of 0.05 Ω ,	1	3	5
		$0.03~\Omega$ and 250 Ω respectively. Calculate the generated voltage and the	•		
		armature current.			
		OR			
3.	a).	Explain the construction of de machine with neat diagram.	1	3	5
	b).	Derive an expression for the emf generated in the armature winding of a DC machine.	1	3	5
		DC macmine.			
		UNIT-2			
4.	9)		2	3	5
4.	a).	Explain swinburne's test for finding efficiency of DC machines. Derive the Torque equation of a DC motor.	2	3	5
	b).	Derive the Torque equation of a DC motor.	4	3	5
		OR			

			-MAR		J
	b).	Derive the e.m.f equation of a synchronous generator.	5	4	5
11.	a).	Explain 'V' and inverted 'V' curves of a synchronous motor.	5	4	5
		OR			
	b).	Explain the working of a synchronous condenser.	5	4	5
10.	a).	Explain the construction of a synchronous machine.	5	4	5
		UNIT-5			
9.		characteristics of 3-phase induction motor.	4	4	10
		Derive the expression for torque, slip and draw speed-torque			
		OR			
	b).	losses with the help of a power flow diagram.	4	4	5
8.	a).	induction motors. Discuss the different power stages of a 3-phase induction motor with	4	4	5
Q	6)	Describe the constructional features of squirrel cage and slip ring	1	1	
		ENGINEERING COLLEGE			
		and impedance referred to secondary			
	b).	primary (ii) Equivalent reactance reference to primary (iii) Equivalent impedance reference to primary (iv) Equivalent resistance, reactance and impedance referred to secondary	3	3	5
		A 50 KVA, $4400/220$ V, transformer has R1 = 3.45Ω ; R2 = 0.009Ω . The values of reactances are X1 = 5.2Ω and X2 = 0.015Ω . Calculate for the transformer. (i) Equivalent resistance referred to			
7.	a).	Explain the construction and principle of operation of single-phase transformer A 50 KVA 4400/220 V transformer has R1 = 2.45 Oc R2 = 0.0000	3	3	5
		OR			
		lagging.			
	b).	turns. Find (i) Transformation ratio (ii) Secondary turns (iii) Voltage / turn (iv) Secondary current when it supplies a load of 400 kW at 0.8 p.f.	3	3	5
	<i>a</i> _j .	phase Transformer? How they are conducted? A 6600/440V Single phase 600 KVA transformer has 1200 primary			
6.	a).	What are the tests required to draw the equivalent circuit of a Single-	3	3	5
		UNIT-3			
		r			
	b).	Explain different losses that occur in a D.C motor.	2	3	5
٠.	a).	motor is reduced by 10% without changing the load torque, find the new speed of the motor.		3	3
5.	a).	A 250V DC shunt motor has armature resistance of 0.25 ohm on load it takes an armature current of 50A and runs at 750rpm. If the flux of the	2	3	5

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

Cour	se Code	Category	L	T	P	С	C.I.E.	S.E.E.	Exam
B23E	EEM301	Minor	3			3	30	70	3 Hrs.
				•	-		•	•	
		POWER CO	ONVER	SION S	YSTEMS	S AND B	ATTERY S	TORAGE	
			((Minor D	egree co	arse in EE	EE)		
Cour	se Obje	ctives: Students	will lea	ırn about					
1.	The op	eration, charact	eristics a	and appli	cations o	f SCR, M	OSFET & I	GBT in powe	er electronics.
2.	The op	eration and perf	ormance	e of rectif	fiers and	inverters	used in pow	er conversior	systems.
3.	The pri	nciples and typ	es of DC	C-DC & A	AC-AC c	onverters	for load req	uirement.	
4.	The co	nstruction, worl	ing and	types of	standard	, modern	and flow bat	teries.	
5.	The Ba	ttery charging,	paramet	ers & Ba	ttery Maı	nagement	System.		
Cour	se Outc	omes: At the er	d of the	course, t	the stude	nts will be	able to		
S.No					itcome				Knowledge Level
1.		re SCR, MOS		z IGBT	characte	ristics, tr	riggering m	ethods and	К3
2.	-	vze AC-DC an onic effects.	d DC-A	AC conv	erters in	cluding	conduction	modes and	K4
3.	Explo	re the DC-DC	converte	ers, AC v	oltage co	ntrollers a	and cyclocor	verters.	К3
4.	Explo	re different typ	es of ba	tteries for	r energy s	storage.	COLL	CCE	К3
5.	Illust	rate the parame	ters & fi	unctional	ities of B	attery Ma	nagement S	ystem.	К3
		Estd. 1980			AU	IONOR	inna		
					SYLLAB	BUS			
UNI (10H	T-I Hrs)	Power Semicon ntroduction, A Semiconductor L & IGBT, Turn Commutation &	dvantag Devices: -on me	ges and SCR, Methods o	OSFET of SCR,	& IGBT,	Static charac	eteristics of S	CR, MOSFE
UNIT-II (10 Hrs) AC-DC Converters: Introduction to Rectifiers, Operation and analysis of single-phase full-wave controlled rectifier circuit with R and RL load (continuous & discontinuous conduction), Effect of freewheeling diode. DC-AC Converters: Introduction to Inverters, Single phase half-bridge & full-bridge inverters, Total Harmonic Distortion.									
UNIT-III (10 Hrs) DC-DC Converters: Introduction, Classifications – buck and boost converters, Simple Problems. AC-AC Converters: Single phase AC voltage controller with R & RL loads, Single phase mid-point Cycloconverter operation - step-up & step-down.								_	

UNIT-IV (10 Hrs) Battery Storage Systems: Construction and Principle of operation of Standard Batteries: Lead—Acid (PbA) Batteries Valve regulated Lead acid battery (VRLA), Nickel—Cadmium (Ni—Cd), Modern Batteries Vanadium R Flow Battery (VRFB), Zinc-Bromine Flow Battery, Iron-Chromium Flow Battery.							
UNIT (10 H							
Textb	ooke.						
1.	Power Electronics, Dr. P. S. Bimbhra, Khanna Publishers, 7 th Edition, 2022.						
1.	Davide Andrea, Battery Management Systems for Large Lithium-Ion Battery Packs, Artech,						
2.	2010.						
Refer	ence Books:						
1.	Power Electronics Handbook: Devices, Circuits and Applications by Muhammad H. Rashid, Academic Press Inc Publications, 2 nd Edition,2006.						
2.	Principles of Energy Storage Systems by P. Jayarama Reddy, B S Publications, 2023.						
e-Rese	ources:						
1.	https://nptel.ac.in/courses/108102145						
2.	nptel.ac.in/courses/113105102						

		Course C	Code: B	23EE	M301
	SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)				
		III B.Tech. II Semester MODEL QUESTION PAPER			
		POWER CONVERSION SYSTEMS & BATTERY STORAGE	Ξ		
		(Minor Degree course in EEE)			
Tim	ie: 3 E		Max. N	Iarks:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
			10 x 2	= 20 N	Iarks
			CO	KL	M
1.	a).	What is latching current in SCR?	1	2	2
	b).	What is commutation in SCRs?	1	2	2
	c).	What is the purpose of a freewheeling diode in a rectifier circuit?	2	2	2
	d).	Define Total Harmonic Distortion (THD).	2	2	2
	e).	A step-down chopper has input voltage of 100V and duty ratio of 0.5. What is the output voltage?	3	3	2
	f).	What is a cycloconverter?	3	2	2
	g).	List of two applications of lithium-ion batteries.	4	3	2
	h).	Name the positive and negative electrodes used in a Ni–Cd battery.	4	2	2
	i).	What is the main difference between primary and secondary batteries?	5	2	2
	j).	Mention two applications of batteries in renewable energy systems.	5	3	2
			5 x 10	= 50 N	
		UNIT-1	<u> </u>		
2.	a).	Sketch the static V-I characteristics of an SCR and explain.	1	3	5
	b).	Describe various triggering methods used in SCR.	1	3	5
		OR			
3.	a).	Sketch the static V-I characteristics of a MOSFET and explain.	1	3	5
	b).	Explain natural and impulse commutation techniques of SCR with circuit diagrams.	1	3	5
		TINITE A			
	1	UNIT-2 Explain the operation of a single-phase full-wave controlled rectifier			
4.	a).	with R-load. Draw input and output voltage waveforms & derive the average output voltage expression.	2	3	5
	b).	Explain the principle of sinusoidal PWM (SPWM) technique. Draw the carrier & modulating signals and resulting output waveform.	2	3	5
		OR			

5.	a).	Discuss the effect of a freewheeling diode in a full-wave controlled rectifier with RL-load. Explain with circuit and draw their waveforms.	2	3	5
	b).	Describe the working of a single-phase full-bridge inverter with R-load and draw the output waveforms.	2	3	5
		UNIT-3			
6.	a).	Explain the working of a step-down (buck) chopper with neat circuit diagram and derive the input-output voltage expression.	3	3	5
	b).	Explain the working of a single-phase AC voltage controller with RL-load with neat circuit diagram and waveforms.	3	3	5
		OR			
7.	a).	Explain the operation of a step-up (boost) chopper with circuit diagram and output waveforms. Derive the relation between input and output voltage.	3	3	5
	b).	Explain the principle and operation of a single-phase mid-point cycloconverter in step-down mode with necessary input and output waveforms.	3	3	5
		UNIT-4			
8.	a).	Explain the construction and working principle of a lead–acid battery with relevant reactions.	4	3	5
	b).	Illustrate the working principle of a vanadium redox flow battery by drawing a labeled diagram and applying the relevant redox reactions	4	3	5
		OR			
9.	a).	Demonstrate the charging and discharging process of a lithium-ion battery with a neat labeled diagram.	4	3	5
	b).	Explain the construction and operation of a Ni–MH battery with neat circuit diagrams.	4	3	5
		UNIT-5			
10.	a).	Define and explain the terms State of Charge (SOC), Depth of Discharge (DOD) and State of Health (SOH) with suitable illustrations.	5	3	5
	b).	Explain how to design a battery pack using series and parallel combinations for a specific voltage and capacity requirement with diagrams.	5	3	5
11.	a).	Explain Constant Current–Constant Voltage (CCCV) charging technique with the help of a voltage-current graph.	5	3	5
	b).	What is the function of a Battery Management System (BMS)? List and explain its main functionalities.	5	3	5
		•	MAD		

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

Course	Code	Category	${f L}$	T	P	C	C.I.E.	S.E.E.	Exam		
B23EE	M401	Minor	3			3	30	70	3 Hrs.		
ELECTRIC VEHICLE FUNDAMENTALS											
			(Minor D	egree co	ırse in EE	EE)				
Course	Object	ives: Students	s will lea	rn about							
1. T	The basic concepts of EVs and vehicle dynamic modeling.										
2. T	he vario	ous configurat	ions of I	EVs, HEV	Vs and po	ower train	components	S.			
3. T	he vario	ous Energy sto	orage sys	stems for	EVs and	understa	nd their char	acteristics.			
4. T	he drive	systems of E	EVs and	their cont	trol.						
5. Tl	he char	ging technolo	gy and i	nfrastruct	ture for E	EVs.					
Course	Outcor	nes: At the en	nd of the	course, t	he stude	nts will be	able to				
S.No				Oı	utcome				Knowledge		
									Level		
1.		re the signific							K3		
2.		ate the config							K3		
3.		re different er					· -	neters.	K3		
4.		ate the PMSN	H.i						K3		
5.	Illustr	ate the chargi	ing techr	iologies a	and infra	structure f	or EVs.		К3		
				EIVU	NEE	KING	CULL	EGE			
	1-	Estd. 1980			SYLLAB		005				
		Introduction to Electric Vehicles and Modeling:									
UNIT-		Introduction to Electric Vehicles (EV), EV History, EV Advantages, Comparisons of EV and Internal Combustion Engine vehicles, Vehicle Dynamics modeling with constant									
(10Hrs	1)	tractive effort, Propulsion System Design, Design Considerations, Overview of Basic									
		electrical quantities and Systems: Electric Generator, Motor, Power Converters.									
-	I I			-			<u> </u>				
	Ar	Architecture of EVs and Power Train Components:									
UNIT-	II Ar	Architecture of EVs and HEVs – Plug-in Hybrid vehicles (PHEV), Fuel cell EV, Power									
(10 Hrs		train components of EVs – EV Transmission Configurations, Transmission Components,									
	Ide	Ideal Gearbox: Steady State Model.									
	100		G . 4	. C. 1317	<u>, </u>						
		Energy Storage Systems for EV: Bottomy Posics Different types Pottomy Peremeters Importance of Lord Acid Pottomics									
UNIT-I		Battery Basics, Different types, Battery Parameters, Importance of Lead Acid Batteries and Lithium Batteries (Li-ion, Li-Polymer), Battery Management system, Fuel cell, Super									
(10 Hrs	2)	Capacitors, Fly Wheel.									
	-	r, 1 1									

	Electric Vehicle Motor Drives:						
TINITE	Electric Drive Components of EV, Permanent Magnetic Synchronous Motor (PMSM)						
UNIT	Drive - Principle and Operation of PMSM, Block diagram representation and operation of						
(10 H	PMSM Drive, Brushless DC (BLDC) Motor Drive - Principle and operation of BLDC						
	Motor, Block diagram representation and operation of BLDC Motor Drive.						
	EV Charging Technology:						
UNIT	-V Overview of the EV battery charging system, Basic Requirements for Charging System,						
(10 H	Infrastructure Needed for Charging Electric Vehicles, Charger Architecture, Charger						
	Functions, EV Charging Standards, Schematics of V2G and V2V Technologies.						
Textbo	ooks:						
1.	qbal Husain, "Electric and Hybrid Vehicles Design Fundamentals", CRC Press, Taylor &						
1.	Francis Group, 3 rd Edition, 2021.						
2.	John G. Hayes and A. Goodarzi, "Electric Powertrain – Energy Systems, Power electronics						
2.	and drives for Hybrid, electric and fuel cell vehicles" Wiley Publication, 1st Edition, 2018.						
Refere	nce Books:						
1.	James Larmine, John Lowry, "Electric Vehicles Technology Explained" Wiley Publication, 2 nd						
1.	Edition, 2012.						
2.	Y. Gao, S. Gay and A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, CRC						
Press, 1 st Edition,2005.							
e-Reso	urces: ENGINEERING COLLEGE						
1.	https://nptel.ac.in/courses/108103009/						
2.	https://nptel.ac.in/courses/108102121/						

		Course C	ode: B	23EE	M401
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		IV B.Tech. I Semester MODEL QUESTION PAPER			
		ELECTRIC VEHICLE FUNDAMENTALS			
		(Minor Degree course in EEE)			
Tin	ne: 3 H	Irs. N	Iax. M	Iarks:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
			10 x 2	= 20 N	larks
			CO	KL	M
1.	a).	Explain two factors that lead to the decline of EVs in the early 20th century.	1	2	2
	b).	Define tractive effort in vehicle dynamics?	1	2	2
	c).	State one advantage of using a fuel cell over a battery in EVs.	2	2	2
	d).	Explain the role of any two major components of an EV powertrain.	2	2	2
	e).	Explain the significance of C-rate in battery performance	3	3	2
	f).	How does BMS improve the safety and lifespan of a battery pack	3	3	2
	g).	Explain why PMSMs are widely used in Electric vehicles	4	2	2
	h).	Differentiate between trapezoidal and sinusoidal back EMF in BLDC motors.	4	4	2
	i).	Distinguish between onboard and off board EV chargers	5	4	2
	j).	Differentiate between V2G and V2V technologies.	5	4	2
		Esta. 1980			
			5 x 10	= 50 N	Iarks
		UNIT-1			
2.	a).	Describe how the basic components of an electric vehicle work together to enable operation.	1	3	5
	b).	Explain in detail Evolution of EVs from early developments to modern-days.	1	3	5
		OR			
3.	a).	Explain the concept of vehicle dynamics with constant tractive effort and derive the equation for vehicle acceleration.	1	3	5
	b).	Explain the role of electric generators, motors, and power converters in evs.	1	3	5
		UNIT-2			
4.	a).	Explain the operation of series Hybrid Electric Vehicle	2	3	5
	b).	Explain the working principle of a fuel cell used in an electric vehicle	2	3	5
		OR			
5.	a).	Discuss in detail about power train components in EV.	2	3	5
	b).	Compare fuel cell evs with battery evs in terms of efficiency, range, and infrastructure requirements.	2	3	5

		UNIT-3			
6.	a).	Explore the importance of Li-ion battery, explain its operation.	3	3	5
	b).	Illustrate battery specifications of EV.	3	3	5
7.	a).	Explain Battery Management system with a neat sketch.	3	3	5
	b).	Explain the performance of Super Capacitors in Hybrid Electric Vehicles?	3	3	5
		UNIT-4			
8.	a).	Explain in detail the major electric drive components used in electric vehicle		3	5
	b). Illustrate the advantages and limitations of PMSM and BLDC motor in evapplications.				5
9.		Explain in detail the working and operation of BLDC drive in EV with block Diagram.	4	3	10
		UNIT-5			
10	2)		5	3	5
10.	a).	Discuss the basic requirements of the Charging system.			
	b).	Explain the infrastructure required for Charging evs.	5	3	5
		OR			
11.	a).	Discuss the schematics of V2G Technologies?	5	3	5
	b).	Discuss the potential benefits and challenges of V2G integration.	5	3	5

CO-COURSE OUTCOME KL-KNOWLEDGE LEVEL M-MARKS